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1 Model for membrane rolling on a support with adhesion

1.1 Condition for stability of a supported membrane

λ
d

Figure S1: Stability of a supported membrane patch of radius d. The free membrane edge has a line tension λ.

We consider a membrane placed on top of a primary supported membrane. The top membrane is mechanically

stable if its attractive interaction energy with the primary supported membrane is larger than the line tension

energy of the membrane edges. The adhesion energy is proportional to the membrane area while the line tension

is proportional to its total perimeter. Considering initially a disk-shaped membrane, there is a critical radius

d0 = 2λ/wad below which the bilayer is unstable and will transform to a vesicle. Here λ is the line tension of

the free membrane edge and wad is the adhesion energy per area. For d > d0, the membrane can be stable

and remain flat. However, upon binding of curvature inducing proteins (e.g. annexins) there is an curvature

energy penalty in the flat configuration due to a spontaneous curvature (c0) induced by the proteins bound to

the membrane. If this energy penalty is sufficiently large, the top membrane may start to curve, even for large

areas where d� d0.

1.2 Initiation of membrane rolling
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Figure S2: Illustration of the roll-up of a secondary planar membrane on a primary supported membrane.

Binding of curvature inducing proteins to the membrane surface induces a spontaneous curvature c0. Initiation

of rolling (equation 4) occurs by detachment of the free membrane edge from the support (A). Rolling is

energetically favored until the roll reaches a maximal radius rm or equivalently, if the rolled angle θ reaches θm

(B).

We consider the rolling of a planar membrane on a support surface consisting of a primary membrane and a

solid material underneath. In the initial state, the membrane is flat and is terminated by a linear free edge.

Upon binding of a protein (e.g. annexins) to the membrane surface the effect of the protein is modeled as the

induction of a spontaneous curvature (c0) of the combined membrane/protein sheet. We will determine the

energy difference between the initial flat configuration and a final state where the membrane is rolled. The

energy of the initial (flat) state is:

E0 = E0A + Ead = A(
kc
2
c20 − wad) (1)

The energy in the final (rolled) state is:

E1 =

∫
A

[
kc
2

(c− c0)2
]
dA (2)
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where kc is the mean curvature elastic modulus[1]. In the case of a linear roll, the mean curvature c = 1
R1

+ 1
R2

reduces to c = 1
R(s) where R(s) is the local radius of curvature in the roll at arc length s. The energy change

for a roll of width W from the flat to the rolled state is:

∆E = E1 − E0 = W

∫ smax

0

[
kc
2

(
1

R(s)
− c0

)2

− kc
2
c20 + wad

]
ds (3)

From equation (3) it can be concluded that ∆E is minimal when 1
R(s) = c0. Rolling is energetically favored

when ∆E < 0 or when:

kc
2
c20 > wad (4)

Equation (4) provides a condition for the initiation of rolling.

1.3 Rolling

Once the barrier in equation (4) has been overcome, the membrane can roll and separate from the bilayer

continuously. However, during rolling the curvature radius R(s) increases and eventually the adhesion energy

will overcome the gain in curvature elastic energy and rolling stops. Experimentally we find that rolling proceeds

to distances of at least 100 µm. Below we investigate the energetics of the rolling process and determine the

rolled distance L in terms of the system parameters kc, c0 and wad.

First we note that equation (3) simplifies to:

∆E = W

∫ smax

0

[
kc
2

(
1

R(s)2
− 2c0
R(s)

)
+ wad

]
ds (5)

To model the rolling process, we assume that the roll is shaped as an archimedean spiral defined by: r(θ) = a+bθ.

Here r(θ) is the radius of the spiral at the rolling angle θ, a is the radius of the inner roll and 2πb is the repeat

distance between roll layers. In the following, the parameter a will be determined by energy minimization while

b is estimated from experiments. A significant simplification is obtained if the curvature radius is approximated

by the radius of the spiral: R ≈ r. We discuss the validity of this approximation in the subsequent section. We

also note that ds ≈ rdθ = r
bdr.

With these simplifications, equation (5) becomes:

∆E =
Wkc
b

∫ a+bθ

a

(
1

2r
− c0 +

wad

kc
r

)
dr (6)

After integration, equation (6) becomes:

∆E =
Wkc
b

[
1

2
ln

(
1 +

b

a
θ

)
+

(
wad

kc
ab− c0b

)
θ +

1

2

wad

kc
b2θ2

]
(7)

The variables θ and a are determined by minimization of the energy change ∆E:

∂∆E

∂θ
|θ=θm = 0,

∂∆E

∂a
|a=a∗ = 0 (8)

Here θm is the maximal rolling angle corresponding to the angle when rolling stops. Corresponding to this is

the maximum (final) radius of the roll: rm = a + bθm. By inserting ∆E from equation (7) we arrive at the

following expressions for the parameters in the final state of the roll:

Maximum roll radius rm:

rm =
c0 +

√
c20 − 2wad

kc

2wad

kc

(9)
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The inner radius a:

a =

[
2
wad

kc
rm

]−1
(10)

The maximal rolling angle θm:

θm =
rm − a
b

(11)

Rolled distance L:

L = aθm +
bθ2m

2
(12)

The slope b of the archimedean spiral can be found as:

b =
r2m − a2

2L
(13)

From which the layer spacing 2πb is easily found from experimentally measured values of L and rm.
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1.4 Rolling model without approximated curvature radius

We now investigate the rolling model in the case where the curvature radius R is described exactly and not

approximated by r. Given the expression r(θ) = a + bθ for the spiral, the radius of curvature is given exactly

as:

R =
(r2 + r2θ)

3/2

|r2 + 2r2θ − rrθθ|
=

(r2 + b2)3/2

r2 + 2b2
(14)

where rθ = dr
dθ and rθθ = d2r

dθ2 . The arc length s is given as:

ds =
√
r2 + r2θ dθ =

√
r2 + b2 dθ =

1

b

√
r2 + b2 dr (15)

Inserting equation (14) and (15) into equation (5) we obtain:

∆E =
Wkc
b

∫ a+bθ

a

[
(r2 + 2b2)2

2(r2 + b2)5/2
− c0

(r2 + 2b2)

(r2 + b2)
+
wad

kc
(r2 + b2)1/2

]
dr (16)

Next we need to find the minimum of ∆E according to equations (8). Here we take advantage of Leibnitz rule:

d

dx

[∫ f2(x)

f1(x)

g(t)dt

]
= g(f2(x))f ′2(x)− g(f1(x))f ′1(x) (17)

Minimization of ∆E in equation (16) leads to the following polynomium:

2
wad

kc
x6 − 2c0x

5 + x4 − 2c0b
2x3 + 2b2x2 + b4 = 0 (18)

with the roots x1 and x2 given as:

x21 = a2 + b2, x22 = (a+ bθm)2 + b2 (19)

Equation (18) is solved numerically and the value of a and θm found from equations (19). The rolled distance

L is determined by integration of ds:

L =

∫
ds =

1

b

∫ rm

a

√
r2 + b2 dr (20)

=
1

b

[
rm
2

√
r2m + b2 +

b2

2
ln(rm +

√
r2m + b2)− a

2

√
a2 + b2 − b2

2
ln(a+

√
a2 + b2)

]
(21)
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1.5 Results

Next we evaluate the rolled distance and compare the results of the two models described above. We estimate

values for the parameters: kc, c0, wad and b. Precise values corresponding to our experimental system (POPC,

POPS 9:1 or cellular membranes) are not available in the literature and we therefore use the following order-

of-magnitude estimates based on similar lipid systems:

� kc=4.0·10−20 J. From Marsh[2], table II.10.4.1, page 474. Reported values for POPC are from 2.5-8.5·10−20

J.

� c0=0.033 nm−1. Based on computational modeling of Shiga toxin by Pezeshkian et. al. [3]. Recent results

on Cholera toxin yield a spontaneous curvature of c0=0.028 nm−1[4].

� b=12nm/2π. This is based on AFM measurements of roll diameters for annexin A4[5].

� wad will cover a range of relevant values. Literature values for neutral SOPC bilayers in 0.1 M PBS report

a value of wad ' 1.0·10−5 J/m2 [6].

A comparison of the rolled distance L versus wad/kc for the two models described above is shown in Figure S3.

Values of the system parameters are indicated above. The two models are indistinguishable on a double-

logarithmic scale and therefore the approximate model gives a reasonable estimation of the rolled length L.
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Figure S3: Comparison of the rolled length L versus wad/kc obtained with the approximated curvature radius

(equation 12) and the exact curvature (equation 21). The mean curvature modulus was fixed at kc=4.0·10−20

J.
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Figure S4: The energy difference between the flat (initial) and the rolled (final) state of a membrane according to

equation (7) (A). The system parameters used are indicated in (A). The stable roll configuration corresponds to

the energy minimum as described by the rolling angle θ = θm. The rolled length L versus wad/kc obtained with

the approximated curvature radius (equation 12) (B). The mean curvature modulus was fixed at kc=4.0·10−20

J. Curves for 3 representative value of c0 are shown and for each curve, the dashed vertical line represents the

critical value of the adhesion energy for initiating rolling (equation 4).
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2 Controls and extended datasets for annexin experiments

Below is a series of extended data for the annexins interacting with membrane patches. The membrane compo-

sition is in all cases: POPC,POPS (90%:10%).

2.1 Negative controls: Absence of Ca2+, ANXA4-Ca3mut, Lact-C2-GFP
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Figure S5: Negative control experiments for membrane patches exposed to annexins in the absence of Ca2+.

Frames (a-f) show the membrane patches immediately before addition of annexin while frames (g-l) show the

same patches 10 min after exposure to 13 nM annexin with the type indicated above frames. There is no response

of the membrane patches to annexin except for a weak physical relaxation of the membrane shape in some cases

(e.g. c to i) which is also observed without annexin. For comparison, the time point 10 min shows a strong

response to all tested annexin types in the presence of 2 mM Ca2+. Control experiment with ANXA4-Ca3mut

(m-p), a mutation of ANXA4 where 3 out of 4 Ca2+-binding sites are passivated. Binding does not induce

rolling, but instead leads to a slow vesiculation from the patch within 10-15 min. Control experiment with the

PS-binding domain Lact-C2-GFP from lactadherin (q-y)[7]. In this case binding is observed in the GFP channel

and does not produce rolling. However, small holes in the membrane patch are generated by Lact-C2-GFP and

these are partly closed again after 10 min. Concentrations: ANXA4-Ca3mut: 43 nM, Lact-C2-GFP: 81 nM.
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2.2 Extended dataset for ANXA1 and ANXA2
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Figure S6: Extended dataset for membrane patches exposed to ANXA1 and ANXA2. Frames (h-l) show data

for ANXA1 without sfGFP and frames (u-y) show data for ANXA2 without sfGFP. In addition, frames (q-t)

show the GFP channel (488 nm) for ANXA2 with sfGFP. The extended data sets without sfGFP confirm that

the GFP tag (see main article) has no visible influence on the type of morphological changes induced in the

membrane patches. The data for ANXA2 w sfGFP show that ANXA2 is accumulated in the bleb structures

corresponding to what is observed for ANXA1. Concentrations: ANXA1-sfGFP: 46 nM, ANXA1: 48 nM,

ANXA2-sfGFP: 58 nM, ANXA2: 40 nM.
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2.3 Extended dataset for ANXA6
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Figure S7: Dataset for ANXA6 extended with images of TopFluorPS (488 nm, frames e-h). The data shows

that the PS lipid is recruited to the membrane edges upon addition of ANXA6 and to the folding structures

emerging from the membrane patch. Concentrations: ANXA6: 50 nM.
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2.4 Extended dataset for ANXA7
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Figure S8: Extended data for membrane patches exposed to ANXA7. Frames (a-d) and (e-h) show the response

of a membrane patch upon exposure to ANXA7 with sfGFP in the DiD and the sfGFP channels respectively.

Frames (i-l) and (m-p) show the response to ANXA7 without sfGFP and confirm that the GFP tag has no

visible influence on the morphological changes induced in the membrane patch. The magnification in (b2)

demonstrates that lenses are nucleated uniformly near the membrane edge. Frames (e-h) and (m-n)show that

ANXA7 and PS lipid are both accumulated in the lens structures. Overall, the morphological changes induced

by ANXA7 are fully equivalent to the observations made for ANXA11. Concentrations: ANXA7-sfGFP: 23

nM, ANXA7: 38 nM.
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2.5 Extended dataset for ANXA3 and ANXA13

D
iD

-C
1

8

ANXA13 without sfGFP

To
p

F
lu

o
rP

S

ANXA3 with sfGFP

D
iD

-C
1

8
A

N
X

A
3

 s
fG

F
P

a b c d

e f g h

i j k l

m n o p

Figure S9: Data for ANXA13 and ANXA3 extended with TopFluorPS images for ANXA13 (e-h) and sfGFP

images for ANXA3 (m-p). The data show that annexin and PS lipid is accumulated in the fragmented roll

structures. Concentrations: ANXA13: 53 nM, ANXA3-sfGFP: 49 nM.
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3 MATLAB code for dendrograms

1 % MATLAB code for construction of dendrogram for human annexins

2 % Full code used to generate Fig. 7e.

3 % Codes are obtained from https://www.ncbi.nlm.nih.gov/protein/

4 clear all;

5 Codes = {'ANXA1' 'NP_000691';

6 'ANXA2' 'AAH68065';

7 'ANXA3' 'NP_005130';

8 'ANXA4' 'EAW99844';

9 'ANXA5' 'NP_001145';

10 'ANXA6' 'AAH17046';

11 'ANXA7' 'AAH02632';

12 'ANXA8' 'AAH73755';

13 'ANXA9' 'NP_003559';

14 'ANXA10' 'NP_009124';

15 'ANXA11' 'CAB94997';

16 'ANXA13' 'NP_001003954';

17 };

18 % Downloading protein (AA) sequences and put them into 'seqs' structure:

19 for ind = 1:length(Codes)

20 AnnexinData(ind) = getgenpept(Codes{ind,2}); % retrieve full info from databank

21 seqs(ind).Sequence = AnnexinData(ind).Sequence;

22 seqs(ind).Header = [Codes{ind,1} ' (' num2str(AnnexinData(ind).LocusSequenceLength) ')'];

% place header names in the seqs structure array

23 end

24 %% alignment and tree generation

25 SeqsMultiAligned = multialign(seqs); % align annexin sequences

26 distances = seqpdist(SeqsMultiAligned,'Method','Jukes−Cantor'); % Calculating distances

between aligned sequences

27 tree = seqlinkage(distances,'average',SeqsMultiAligned); % make dendrogram with UWPGMA method

28 %tree = seqlinkage(distances,'weighted',SeqsMultiAligned); % make dendrogram with WPGMA method

29 %% plot dendrogram

30 h = plot(tree,'orient','top');

31 ylabel('Distance','FontSize',8)

32 set(h.terminalNodeLabels,'Rotation',90,'FontSize',8)

33 set(h.BranchDots,'MarkerFaceColor','r','MarkerSize',9);

34 set(h.axes,'LineWidth',1,'FontSize',8);

35 set(h.BranchLines,'LineWidth',1,'Color','b');

36 set(h.LeafDots,'Marker','o','MarkerFaceColor','k','MarkerFaceColor','w','MarkerSize',9)

Figure S10: MATLAB code for construction of dendrogram for human annexins. Full code used to generate

Fig. 7e and Fig. S11
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3.1 Supplementary dendrogram: WPGMA method
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Figure S11: Dendrogram for annexins made with the WPGMA method for comparison with the dendrogram in

Fig. 7e made with the UWPGMA method. The two dendrograms have identical connections. See code in Fig.

S10 and Methods section for details.
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